

Selecting the Appropriate Species

- 1. Acceptable to the market
 - A. Supreme quality demands?
 - I. Good-fair quality hay.
 - Bermudagrass, tall fescue.
 - II. Premium quality hay.
 - ✓ Bermudagrass, annual ryegrass, alfalfa.
 - iii. Supreme quality hay.
 - √Tifton 85 bermudagrass, annual ryegrass, alfalfa.

Variety	Overall Rating	Relative Yield	Digestibility	Winter Hardiness	Persistence	Leaf Spot Resistance
Alicia	2.5	100	Р	G	Р	Р
Coastal	3.5	100	F	G	G	E
Sumrall	3.5	98	G	G	G	G
Tifton 44	4.0	90	E	Е	G	Е
Tifton 85	5.0	102	E	F	E	E

Rating: 1 = Poor, 3=Good, 5= Excellent

Selecting the Appropriate Species

- 2. Agronomically acceptable
- b. Tolerant of climatic conditions
 - ii. Tall fescue (North and Central MS)
 - iii. Berdmudagrass, bahiagrass (South MS)
 - c. High yields
 - d. Vigorous establishment
 - e. Soil fertility demands
 - f. Tolerant to soil conditions

Selecting and Establishing a Hay Crop

- "No-till"
 - Best when terrain is rolling or soil is at risk of erosion
 - Primary used for seeding or inter-seeding
 - Not feasible for vegetative establishment (sprigging)
 - Seeded type blends of bermudagrass varieties:
 - Cheyenne, Cheyenne II, Ranchero Frio, Sungrazer, Sungrazer Plus, Sungrazer 777, CD90160, KF194, Pasto Rico, Laredo.

Establishing Hybrid Bermudagras

- Best methods:
 - Dormant sprigs (rhizomes) 40-50 bu/ac
 - Dec. to early Mar.
 - Sprigs with green tops 30-50 bu/ac
 - Sprig late April (after last freeze) to early Aug.
 - Top/green stems 50-60 bu/ac
 - Jun. Aug.
 - · Coastal, 85, Sumrall
 - Not recommended for Tifton 44
- Best is seedbed is well-prepared

Fertilizing Summer Hay Fields

- Fertilizer cost accounts for about 70% of the input associated with hay production.
- Keys to successful fertilization?

- Soil testing
- Applied nutrient with the right source, at the proper rate, at the proper time
 - Especially nitrogen.

Fertilization Strategies for Hay Production

- Questions to be addressed:
 - What nutrients are essential for high yields/quality?
 - What is "goin' on" with the fertilizer market?
 - How do I get the most out of my fertilizer?
 - What are the differences between N fertilizer products?
 - What are the implications for using poultry litter (or other wastes) as my main source of fertility?

Mississippi State Extension

Functions of N,P, and K.

- Nitrogen
 - Increases forage production and quality
- Potash
 - It is important for plant persistence and survival under stress (drought).
- Phosphate
 - It helps to ward off diseases and prepare for dormancy

	N	P_2O_5	K ₂ O	Grade		
Forage	Dry matter basis (lb/ton)					
Alfalfa ¹	56	15	60	42-11-46		
Annual Ryegrass	68	16	67	45-11-44		
Bahiagrass	43	12	35	48-13-38		
Bermudagrass	46	12	50	42-11-46		
Clover-grass ¹	50	15	60	40-12-48		
Tall Fescue	38	18	52	33-17-48		
Orchardgrass	50	17	62	39-13-48		
Sorghum-Sudan	40	15	58	35-13-51		
Vetch ¹	56	15	46	49-13-39		
¹ Legumes obtain N from the	air					

Split Your Nitrogen Applications

- Long-term
 - This can increase yields by 1200-2400 lbs/acre
 - This can increase NUE by 25-30%
- Especially important under extremes
 - Leaching
 - Volatilization (in the case of urea-based products)
 - Late freeze
 - Drought

Mississip Extern	10010	and of C	K ₂ O Rate Coastal E 6-year <i>F</i>	Bermuda	
	K₂O Rate	Hay Yield		Year 1	Year 6
	(lb/	'ac)		Stan	d (%)
	0	8919		57	29
	100	12399		47	84
	200	13583		45	89
	400	14341		41	88
	oil test K was ve ource: Fudenbu	ery low. rg and Twidwell, 2	2000		Mississippi State

Conditioner Styles

Flair impeller

- Fine stemmed grass
- The goal of impeller conditioning is to gently remove the waxy surface from the plant, so it will dry down more quickly.
- This process exposes the inner moisture, which allows the crop to dry down faster than if it were simply cut and laid out on the field.

Roller (crimper)

- Thick stemmed grass and leafy legumes
- Roll conditioning occurs by applying intermittent pressure to the crop in order to crimp the stem.
- This break in the stem allows moisture to escape from the plant where it is crimped.

Mississippi State Extension

Hay Raking Systems

• Parallel bar rake

Rotary rakes

- Some are dual function (rake or ted).

Wheel rakes

- Operated at higher speed (saves time)
- Tend to leave more biomass in the field.

"My Buddy, Ted"

- Increase hay drying rates by 20-40% (~0.5 1.0 day)
- DM Loss: Grasses (<3%), Legumes (7 10% +)
- Break up clumps and distribute the crop over the entire area.
 - Increase sun exposure.
 - Fluffed for better air movement.
- Initial tedding: within 2 4 hrs (clumps break better).

Mississippi State Extension

Bailing Moisture

- First cutting hay normally baled around 15% moisture.
- Most baled hay will reach 12% moisture in about two months
 - 4 to 5% dry matter loss
 - Dry matter loss directly related to heat generation by microbial activity
 - Energy, protein, phosphorus, and calcium levels change little at this moisture

Temperature (°F)	Monitoring Recommendations
< 130	Monitor temperatures in the hay stack twice a day.
130 to 150	Temperature may fluctuate up and down. Check temperature every few hours.
150 to 175	Move hay out of the barn to provide air circulation and cooling since temperature will most likely increase. Monitor temperature every two hours.
>175	Fire is imminent or present. Contact the fire department immediately. Continue to monitor the temperature and do not attempt any put out any possible fires or move hay.
Source: Gay et al., 2003	Mississinni Stat
MAXILLA.	INTERNATION OF THE PROPERTY OF

Storage Losses

- Dry matter loss during storage is primarily non-structural carbohydrates.
 - These are the most digestible portions of the plant
 - Increases the concentration of structural carbohydrates = less digestible.
- Protein is lost at a much slower rate
 - Percentage of protein can actually increase (due to loss of NSC and water)
 - Total of protein will be less

	Hay price (per ton)					
Storage loss (%)	\$40	\$60	\$80	\$100	120	
5	2	3	4	5	6	
10	4	6	8	10	12	
15	6	9	12	15	18	
20	8	12	16	20	24	
25	10	15	20	25	30	
30	12	18	24	30	36	
35	14	21	28	35	42	
40	16	24	32	40	48	
Note: Does or reduced		le losses	associa	ted with s	hrinkag	
Source: R	aymond, 2004					
					- Mississippi	

Situation

- 1200 lb round bale stored in the ground with 33% DM loss (400 lbs)
 - Initial forage quality: 8% CP, 55% TDN
 - Losses:
 - 32 lbs of CP and 220 lbs of TDN.
 - TDN replaced with corn at a cost of \$5.50 per cwt, replacement cost is \$15.12 per bale for TDN only.
 - Replacement cost for protein losses during storage is \$8.32
 when using soybean meal at \$11.00 per cwt, but can be as
 high as \$20 if self-feeding protein blocks are used as the
 supplemental protein source.
 - Purchase of additional hay to replace the dry matter losses from storage and feeding is ~ \$10 per bale.
 - Approximate loss per bale is \$8 \$10

Field Storage Recommendations

- Store on high, well-drained ground
- Store in open, sunny area
- Store in rows with flat edges touching and round edges separated (unless tarped)
- Orient rows North and South
- Orient rows down slope, not across slope
- Store near feeding area

Rain Effect in Quality Losses					
Hay Forage	Leaves retained (%)	CP Retained (%)	TDN Retained (%)		
Standing Crop	100	100	100		
Field Cured					
No rain	62	72	59		
Rain	32	55	52		
Rainfall amounts up Source: Evans, J. U					
Made					

3 7.9 18.5 83 17 27.0 65.2 8.4 16.4 79 21 29.1 61.9 5 30.6 59.3 9.2 15.4 70 30 6 10.3 13.3 62 38 31.6 58.0 10.2 10.7 56 44 32.9 54.1 12 10.4 9.0 51 49 33.4 51.0 Stichler and Bade, 1998 Mississippi State

Mississippi State Extension

Maturity Affects Nutrient Composition

- The decision of cutting time: early July vs. early August.
 - The July harvest produced about 2400 lb DM/ac vs. 2800 lb DM/ac in August.
 - The July cutting was tested at about 7% CP and 55% TDN and the August cutting was about half as good for protein content (3%) and 46% TDN.
 - July = 168 lb of CP
 - August = 84 lb CP

Calculation

• For a ton of SBM (\$200/ton)

 $200 \times (90/100) \times (49/100) = 822 \text{ lb CP/ton}$ (\$200/200 lb) /(822 lb/2000 lb) = \$0.227/lb CP

- CP value in the hay?
 - July = 168 lb * 0.227 = \$38.14
 - August = 84 * 0.227 = \$ 19.07
 - Loss = \$15.05 /ac
 - Assume you have 20 acres = \$301.00

Baleage- An Option for Harvesting Quality

Advantages:

- Lower the risk of rain damage
- Less shatter loss
- Higher forage quality
 - Lower NDF, ADF, and ADL
 - Higher CP
 - Increased Digestibility
 - Increased Palatability

Hancock and Collins, 2006.

MANALA

Mississippi State Extension

Baleage

- Disadvantages
 - Higher cost than conventional hay methods
 - Costs are offset by losses in hay methods
 - Bales can be very heavy
 - Some balers can't bale wet forage
 - Tears or punctures can lead to spoilage
 - Possibility of spoiled silage causing sickness
 - Disposal of used plastic

Baleage Production Cost

- Plastic
 - \$5.00 \$15.00/ton DM
- Wrapper Cost
 - \$2.00 \$5.00/ton DM
- Fuel & Repairs
 - \$0.50 \$2.00/ton DM
- Labor
 - \$0.75 \$2.00/ton DM
- Total
 - \$12.00 \$25.00/ton DM

Bale and the Right Moisture

• Ideal range, 50-65% Moisture

40% Poor Fermentation Toxic Potential _70% (Clostridial, Moisture

> Rule of Thumb: Bale when the forage is no longer wet enough to writing juice out of a

handful.

Listerosis

Bale Harvest Management

- Cut mid-afternoon on one day, bale and wrap the next day.
- Amount cut = how much can be baled and wrapped the next day.
- Bales should be wrapped within 12 hrs of bailing.
 - Large Tubes
 - Use 6-10 layers (+ double on joints)
 - Individual bales
 - 4-6 layers

Where are we now?

- Presently, hay is marketed predominantly on a per bale basis.
 - Weight and quality are rarely accounted for
- Will we ever get to weight-based marketing?
 - Fertilizer, fuel, squeeze on forage inputs may eventually force us!

Hay Production Summary

- Harvesting forage on time is the first principle in producing good-quality forage.
- Providing plants with the proper nutrition is critical to high yield and quality.
- Include legumes in your forage stands.
- Protect your investment by storing hay properly.

