

Fencing

- Grazing management tool
- Assess farm resources
 water, shade, facilities
- Select fencing type
 permanent vs. semi-permanent
- Determine fence placement and layout
- Develop construction plans
 construction specifics
 materials list

Electric Fencing

- Advantages

- most cost-effective fencing
 excellent choice for crossfencing
 can run an electric wire offset around interior of perimeter fence
 can be erected relatively quickly
 must be installed properly (grounded, insulator use, adequate
 power supply, sufficient wire numbers and spacing)
 portable forms available (tread-in posts, polywire / tape)
- **Disadvantages**

- Cattle must be trained to use
 • may not be ideal for stocker receiving
 • may not be effective if power lost for extended periods
 • requires routine maintenance
 • clearing vegetation, wire tightening

MISSISSIPPI STATE

Fencing Cost Comparisons

Item ¹		Fence	е Туре	
	Woven wire	Barbed wire	High-tensile nonelectric (8-strand)	High-tensile electric (5-strand)
Initial cost /foot	\$1.51	\$1.23	\$1.12	\$0.70
Estimated useful life	20 years	20 years	25 years	25 years
Maintenance cost/year	\$159	\$129	\$74	\$46
Total cost /year	\$338	\$274	\$193	\$121
Cost/foot/ year	\$0.26	\$0.21	\$0.15	\$0.09
¹ Based on a 1,320 ft fence Source: Iowa State Unive	e ersity Extensio	on. July 2005.	FM 1855.	
				MISSISSIPPI STATI

Recommended Post and Wire Spacing for Cattle Fences

Cattle Type	Dist	ance from G	ound for Wir	e Number, ind	hes				
	Wire 1	Wire 2	Wire 3	Wire 4	Wire 5				
Cows	30								
Cows and calves	17	38							
Hard-to-hold cattle	17	27	38						
Boundary fence	5	10	17	27	38				
Fence Type		Po	st Spacing, fe	et ¹					
Woven wire	12 to 14								
Barbed wire	12 to 14								
Electric ²		20 to 75							
High tensile ²		16 to 60							
Board			8						
Corrals			6						
¹ Driven posts are 1.7	times as stre	ong as tamp	ed posts.						
² Post spacing depend	ls on terrain	. Use batten	s (stays or d	roppers).					
				3	MISSISSIPPI STATE				

Paddock Layout

- Number

- Size
- H Shape I different fencing requirements
- Forage species, soil types, drainage
- Water and shade locations
- Feeding locations
- hay, grain supplements, minerals and vitamins - Gates, lanes, natural boundaries
- Proximity to cattle handling facilities

MISSISSIPPI STATE

Grazing Formulas days of rest Number of paddocks = +1 days of grazing

Acres average animal weight	re x	quired per p dry matter consumed per animal as % of body weight	ado x	dock = number of animals	x	days on the pasture	
		dry matter available in grazing area	x	% of dry ma utilized by	attei graz	r zing	
						MISSISSIPPI : ETTENSION SEE	STATE
						EALENDARY 202	

Grazing Formulas
Total acres required = number of x acres required per paddock
Stocking rate = number of animals grazed total acres grazed
number of animals grazed Stocking density = paddock size (acres)
(e) Mississiphi st

Water as a Nutrient

- Nutrient required in greatest quantities

used for body temperature regulation, growth, reproduction, lactation, digestion, nutrient utilization, mineral balance maintenance, pH buffering of body fluids, waste removal, joint lubrication, nervous system cushioning, hearing, and eyesight

- Provide quality fresh water at all times - cattle should not have to travel long distances

- restricting water intake below animal need reduced feed intake, lower performance, death

MISSISSIPPI STATE

MISSISSIPPI STATE

Factors Affecting Livestock Water Requirements

🐂 air temperature The type of diet milk production m pregnancy status mphysical activity 🐂 rate of gain

moisture in diet 🐂 salt intake M daily dry matter intake

MISSISSIPPI STATE

Water Requirements							
Beef Animal	Daily water needs, gallons/head						
	50°F	90°F					
400-lb calf	4	10					
800-lb feeder	7	15					
1,000-lb feeder	8	17					
Cows and bulls	8	20					

Adequate Water Availability

- Use adequate number and size of water sources
- Do not allow supplies to run low or out
- livestock may go thirsty
 livestock may damage water troughs
- water quality declines - Check daily
- Float

Water Quality is Important

Minpacts water intake, animal performance, animal health, and environment

Water Quality Parameter	Recommended Level ¹				
рН	6.5 to 8.0				
Total Dissolved Solids (TDS)	<u><</u> 3000 ppm				
Nitrate-nitrogen	<u><</u> 10 ppm				
Sulfates	<u><</u> 500 ppm				
Coliforms (fecal bacteria)	1 count / 10 mL				
Blue-green algae	Avoid nutrient-enriched, warm water				
1 ppm – parts	per million: 1 ppm - 1 mg/kg				

Water Sources

- Water troughs
 - supplied by wells, springs, or community water
 - many different waterer designs available
 - may freeze in cold weather
- Ground water
 - ponds, lakes, streams, creeks
 - may be riparian sources (shared by others)

Riparian Zone Management

- Elivestock use of riparian areas and ponds may lead to water contamination with nutrients, pathogens, and sediments
- Management options
 - excluding or limiting access by livestock
- providing water troughs away from unfenced streams
 - only effective when environmental conditions do not create heat stress on animals

Source: Franklin et al. 2009. J. Anim. Sci. 87:2151-2159.

Water Location

- Affects pasture utilization

- Provide water within 650 to 1000 feet of all pasture areas for optimum grazing uniformity
 Ilvestock may loaf near water sources, especially when heat stressed or ill
- Centralized watering stations
 - fencelines, lanes, wagon-wheel center serve multiple paddocks
 high traffic areas subject to trampling and nutrient
 concentation

- Temporary water locations
 use couplers, pipes/hoses, and troughs
 establish relatively easily off of existing waterers
 - MISSISSIPPI STATE

Livestock Heat Stress

Animals cannot adequately dissipate body heat environmental heat metabolic heat (produced by body processes) fermentation heat (produced in rumen as part of digestion)

- more heat produced on low quality, high fiber forages

Heat stress effects

- Iower feed intake
- reduced growth performance
 depressed milk production
- decreased reproductive performance
 increased dark cutter carcasses
- possible death

MISSISSIPPI STATE

Heat Stress Effects on Reproduction

Heat stress = combination of temperature and humidity

- Effects of heat stress on cows
 - hormone imbalances
 - reduced ova quality
 - early embryo death
 - reduced blood flow to uterus
 - shortened gestation
- Effects of heat stress on bulls
 - sperm cell quality and numbers decline

Livestock Heat Stress

The Heat stress caused by several factors

- primarily due to high air temperature
- intensified by high humidity, thermal radiation, low air movement
- Theat stress effects depend upon
 - duration
 - magnitude
 - timing
 - cattle genotype (breed composition)
 - diet

				He	eat	In	dez	X				
High					Rel	ative H	umidity	1, %				
Temp, °F	35	40	45	50	55	60	65	70	75	80	85	90
100	106	109	114	118	124	129	136	143	150	158	167	176
99	104	107	111	115	120	126	132	138	145	153	161	170
98	102	105	109	113	117	123	128	134	141	148	155	164
97	100	103	106	110	114	119	125	130	136	143	150	158
96	98	101	104	108	112	116	121	126	132	138	145	152
95	96	99	102	105	109	113	118	123	128	134	140	147
94	95	97	100	103	106	110	114	119	124	129	135	141
93	93	95	98	101	104	107	111	116	120	125	130	136
92	92	94	96	99	101	105	108	112	116	121	126	131
91	90	92	94	97	99	102	105	109	113	117	122	126
90	89	91	92	95	97	100	103	106	109	113	117	122
89	88	89	91	93	95	97	100	103	106	110	113	117
88	87	88	89	91	93	95	98	100	103	106	110	113

Temp., °F					umidity,	ity, %							
	30	35	40	45	50	55	60	65	70		80	85	
100	84	85	86	87	88	90	91	92	93	94	95	97	
98	83	84	85	86	87	88	89	90	91	93	94	95	
96	81	82	83	85	86	87	88	89	90	91	92	93	
94	80	81	82	83	84	85	86	87	88	89	90	91	
92	79	80	81	82	83	84	85	85	86	87	88	89	
90	78	79	79	80	81	82	83	84	85	86	86	87	
88	76	77	78	79	80	81	81	82	83	84	85	86	
86	75	76	77	78	78	79	80	81	81	82	83	84	
84	74	75	75	76	77	78	78	79	80	80	81	82	
82	73	73	74	75	75	76	77	77	78	79	79	80	
80	72	72	73	73	74	75	75	76	76	77	78	78	
78	70	71	71	72	73	73	74	74	75	75	76	76	
76	69	70	70	71	71	72	72	73	73	74	74	75	
vestock Weather	N	ormal <	74	Ale	ert 75 to	78	Dan	nger 79 t	o 83	Em	Emergency >84		

Livestock Heat Stress Need to provide adequate water shade ventilation

Adequate Shade

The At least 30 to 40 ft² per head for mature cows on pasture

- sheds, barns, trees
- do not allow flexibility in grazing system
- can develop mud problems

The Cooling potential reduced as cattle crowd together under limited shade

can be worse than no shade at all

Shade Type

📅 Permanent

- sheds, barns, trees
 do not allow flexibility in grazing system
 can develop mud problems
- M Portable

- can be moved

- to accommodate different grazing systems
 to avoid mud and manure accumulation
- usually less expensive
 e.g., welded pipe and shade cloth
- must be constructed to withstand damage by animals

Shade Location

M Affects pasture utilization

- livestock "camp" under shade
 - concentrate nutrients
 - stress trees, damage vegetation
 - create bare ground, mud
- strategic placement along fencelines

MISSISSIPPI STAT

Cattle Comfort

- Adequate space
- comfort, socialization, environmental management
- Pasture, pen, and facilities
 - mud/dust reduction, weather extreme protection
 safe design and sufficient maintenance/cleaning
- Timely marketing
- Stress reduction
- Sufficient nutrition
- n Euthanasia considering animal welfare

MISSISSIPPI STATE

Animal Welfare

- Ranchers are responsible for the basic requirements of animals they raise access to ample feed and clean water
 - timely and appropriate veterinary care to prevent and treat disease
 - practice appropriate and efficient movement, restraint, and transport of livestock
- Animal care and stewardship improves:
 perception
 production
 - production

Producer Code of Cattle Care

Provide necessary food, water, and care to protect the health and well-being of animals
 Provide disease prevention practices to protect herd health, including access to veterinary care
 Provide facilities that allow safe, humane, and efficient movement and/or restraint of cattle
 Make timely observations of cattle to ensure basic needs are being met

- Minimize stress when transporting cattle

