

Characteristic	Forage Diet	Grain Diet
рН	6.0	5.4
VFA most produced	Acetate	Propionate
Microbe Population	Forage Digesters	Starch Digesters
Glucose Level mg/dL	40-50	90-110
Eff. Forage dig.	High	Low
and the states of		Constant of the state
	and the second second	
		and the second second

Complete Performance of Cattle Grown on Native Grass or Wheat Pasture¹

Item	Native Grass	Wheat Pasture
Nov. Initial Wt,	505	505
May Final wt, lbs	613	895
Feedlot performance		
Days on feed	130	88
ADG lbs/d	4.15	3.85
Feed intake, lbs/d	22.7	23.4
Feed:Gain	5.46	6.06
Final wt, lbs	1155	1221
Carcass wt	717	773
Quality Grade ²	382	391
¹ Native grass was blue gram ² 300 select 400 Choice	a, tobosa, little bluestem, buffalo	grass Choat et al. JAS 2003.

	Cow 1200 lb peak lact.	Stocker (600 lb) gaining 2.5	Stocker (800 lb) gaining 2.5	Bred Heifer (1000 lb)
Intake, lb/d	30	18	22	25
СР	12%	12-13	11-12	9%-10%
TDN	64%	65-70	70	57%
			and the second	
		State 1		A Transferred

Take Home

- Cows are in a mbiotic relationship with microbes
 - Must meet needs of both
- Protein in feeds (except for urea) has two fractions
 - -UIP meets animal needs
 - DIP meets microbe needs

Take Home

- Fiber content of forages provide energy for microbes (glucose)
- Microbes synthesize VFA from glucose
 VFA become glucose outside of rumen for animal to use
- Lignin is indigestible
 - Represented by ADF in forage analysis report

- Bovine Nutrient Needs
 - -Heifer lactating
 - Cow lactating
 - Heifer Steer Bull Growing
 - Bull maintenance
 - Cow maintenance

		Control	Fertilized	
-	Animal Grazing Days	837	897	
	Acres	7.16	4.95	and a set
d.	Gain, lb	242	238	
State -	Gain/acre	177	271	
ooth	Bromegrass pastures, N	Jebraska		

Diuey	rass ar		Fescue	Under
D	ittere	N Ap	plicatio	ns
				and the second s
Nitrogen Applied Lb/Acre	Kentucky Bluegrass Yield Ib/Acre	Kentucky Bluegrass % Crude Protein	Tall Fescue Yield Ib/Acre	Tall Fescue % Crude Protein
0	700	12.8	1700	11.1
45	1600	15.5	2800	11.8
90	2100	19.1	3900	14.8

	Bahia	Bermuda	Crabgrass	Sorghum S. grass	Millet
СР	10	15	16+	16-22	14
TDN	50	55	55+	55-60	55
Pests	None	Yes	Yes	Yes	Yes
			-		
		and the second	1 Carton		A. Mar

C2 I will leave KY BG since it does not grown in MS. Cowboy, 8/15/2010

Species *	N rate**	Dates	Cow ADG	Calf ADG	Gain Ib/A
Rye +clovers	100	Jan 8-Oct 5	.90	1.91	511
Arrowleaf and crimson clover	0	March 11 – Oct 5	1.37	1.94	410
Ryegrass	150	Feb 14- Oct 5	.81	1.76	422
None	100	April 6- Oct 5	.49	1.57	293

- -D sunlight
- -E forage
- E Toruge
- B vitamins
 - Functional rumen should produce its own source
 - Offered in feed destroyed in rumen

	Control Pasture	Fertilized Pasture	Supplement/ no Fert
Anim.Grazing days	834	897	884
Area	2.90	2.01	2.01
3W gain <g ha<="" td=""><td>197</td><td>302</td><td>404</td></g>	197	302	404
ADG, kg/d	.68	.67	.92
Supplement: roughly 65%	5 lbs of DDG per	head daily (30% C	». P:

Item	Control	High Starch	High Fiber	High Fiber Free choice
Supplement intake, lbs	0	4.21	4.27	4.98
Daily gain (115 d)	2.14	2.205	2.36	2.25
Conversion (supp)	-	5.9	4.8	6.4
Final BW	710	716	732	725
			ALL STREET	

			All's
Our cow nee	eds 12% CP and 62	% TDN, she is eating ab	out 30 lbs DM
Our pasture	e gives us 10% CP a	nd 57% TDN	
Needs 12 62	- Supplied - 10 - 57	= Status = 2% Short on CP = 5% Short on TDN	
Our supplem	nent has 25% CP ar	nd 75% TDN	
	CP/.25 = 8 % of di TDN/.75 = 6.7% d	iet to meet CP of diet to meet TDN	
Which is the	e bigger value?		

